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The reactions of hydrides and Grignard reagents with simple open-chain al- 

aehydes aa ketones I (L, M, S, and R being groups containing carbon and hy- 

drogen only) are known to lead predominantly to the diastereoisomers IIA, as 

predicted by "Cram's rule" (1). 

I IIA IIB 

According to current theory, reactions of this type occur via "reactant-li- 

ke" transition states, in which the nucleophilic part of the reagent (RI-) (2) 

lies in the n-axis of the carbonyl carbon. Cram (1, 3) assumes that t!to pre- 

ferred conformations of the transition states ars such that, for stsric rca- 

sons, RI - is remote from the two bulkiest groups L and M, as in CA* and CR', 

and that CA* ["open-chain model" (1, 3)] is preferred over CB* because it on- 

ly involves steric strain (a) betweerl L and R, rather than between L and t!fle 

allegedly bulkier metal-complexed a?ld solvatea carbonyl oxygen (2). 

Karabatsos (4) has recently criticised this interpretation, and has sug- 
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gested that the conformations of the preferred (reactant-like) transit on 

states are the same as those of the corresponding aldehydes (5), with either 

M (KA*) or L (KB$) eclipsing the carbonyl oxygen; he assumes that, for ste- 

ric reasons, the incoming RI- group is closest to the smallest group S, as 

in KA* and Kg*, and that KA' is preferred over KB* because it involves smal- 

ler carbonyl-eclipsed group interactions. The correspondence SetTeen the 

magnitude of these interactions, as deduced from aldehyde n.m.r. data (5b), 

and the product ratios (IIA/IIB) is, in many cases, quite good. 

Both these interpretations suffer, in our opinion (6), from two major 

shortcomings: 

(a) It seems inconceivable that the mechanism of the hydride reduction of 

nunhinderedn cyclohexanones can differ in any significant respect from that 

of simple open-chain ketones; and yet the reduction of 2-methyl-cyclohexa- 

none, for example, leads preferentially to trans 2-methyl-cyclohexanol (via 

the allegedly product-like transition state DB*), whereas it would have been 

expected to lead preferentially to the cis isomer via the reactant-like tran- 

sition state DA' which, to within a very few degrees of dihedral angle, would 

be identical with the proposed transition states CA* and KAS [LR = (CH2)4] 

(7, 8). 

(b) Making R progressively mor e bulky must introduce progressively more 

strain (a) into the transition states CA' and KA*, and hence destabilise them 

with respect to the transition states (CB' and KBS, respectively) with the 

"opposite" configuration. In other words, the bulkier 9, the less stereose- 

TABLE 

Diastereoisomer ratios (IIA/IIB, M = Me, S = R' = H) in the 

alcohols from the LiAlH4 reduction of the ketones (I) in 

ether at 35O, and (in parentheses) the activation 

enthalpy differences (AAH*) (9). 

L R = Me R = Et R = iPr R = tBu 

cyclohexyl 1.6 (-1.1) 2.0 (-1.1) 4.1 (-1.5) 1.6 (+O.l) 

phenyl 2.8 (-1.0) 3.2 (-0.9) 5.0 (-0.3) 49 (-2.7) 

lective these reactions should be. This is not borne out by experiment: in 

the lithium aluminium hydride reduction of tvo series of ketones (I, L = Ph 

and cyclohexyl, M = Me, S = H; R = Me, Et, iPr, tBu), the bulkier R, the 

more stereoselective the reactions become (see Table), the only exception 

being the fall in stereoselectivity in the cyclohexyl series on going from 

R = iPr to R =.tBu. The stereoselectivity of the reduction in the phenyl se- 
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ries when R = tBu is, on the contrary, strikingly high: the threo isomer 

(IIA) is obtained 98% pure even at 35O, and the product is 99.8% pure threo 

when the reaction is carried out at -70". 

The purpose of this communication (6) is to show that a simple, internally 

consistent, interpretation of the steric outcome of these reactions, encom- 

passing both open-chain carbonyl compounds and cyclohexanones (8), can be ba- 

sed upon the following four premises: 

(1) The transition states in these reactions are, in all cases, essential- 

ly -reactant-liken (1, 3, 4), rather than *product-liken (10). 

(2) Torsional strain (Pitzer strain) involving partial bonds (in transi- 

tion states) represents a substantial fraction of the strain between fully-for- 

med bonds, even when the degree of bonding is quite low (11, 12). In the case 

of open-chain carbonyl compounds, this implies preferred staggered conforma- 

tions for the transition states, in which RI' is approximately * to two of 

the groups on the adjacent carbon atom (as in Al', BIS, B2*), rather than 

eclipsed (CA*) or half-eclipsed (KA') with one of them, be it the smallest. 

(3) The important steric interactions involve RI- and R, rather than the 

carbonyl oxygen as assumed by Cram (1) and Karabatsos (4). On this psis, 

the least strained of the six possible staggered conformations is Al , follo- 

wed by Bl' and B2' (the other three all involve gauche interactions between 

RI- and L, and, at the same time, between R and M or L). 

L+*_ ++@ Z!!!!?i!iH 

Al* Bl* B2$ 

(4) Polar effects stabilise those transition states in which the separa- 

tion between R1- and an electronegative group (L, M, or S) is greatest, and 

destabilise the others. 

It follows from these premises that, in the absence of polar groups, the 

conformation of the preferred transition state in the case of open-chain keto- 

nes is Al*, and that the stereoselectivity of the reactions is generally ex- 

pected to increase as either L or Rl - is made bulkier since this increases the 

strain in B2* (relative to Al*), and also as R is made bulkier since this in- 

creases the strain in Bl* (13). 

The latter trend is indeed found in our cyclohexyl series for R = Me, Et, 
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iPr, but it is followed by a sharp drop on going from R = iPr to R = flu (see 

Table). The preferred transition state Al* is not, however, strain free when 

R = tBu (See inset), and the drop in stereoselectivity probably reflects this, 

strain between L and R in Al* (R = tBu) becoming almost 

1 

4 

as severe as strain between L and R'- (and 0) in B2*. 
M 

s' M 
Polar effects modify this picture. Thus, the reac- 

tions of hydrides and Grignard reagents with a-chloro al- 
Ye 

0," 8.. 
dehydes and ketones (I, L = alkyl, M = Cl, S = H), in 

#& II which M is strongly electronegative, are known not to 

obey Cram's rule (14), and this is consistent with a sta- 

Al*(R = tBu) bilisation of B2*, in which the separation between RI- 

and M is greatest, and a destabilisation of Al', in which 

the groups bearing a partial negative charge (0, M and R*-) are crowded toge- 

ther. Conversely, Al* is expecfed to be stabilised, and B2' destabilised, when 

L is electronegative. The reactions should therefore be more stereoselective 

when L is an electronegative group (L = phenyl) (15) than when it is not (L = 

cyclohexyl). This is indeed what is observed (see Table), and the effect is 

especially marked when R is very bulky (R = tBu), because this introduces far 

greater steric strain into the other transition state (Bl*) leading to diaste- 

reoisomer IIB than it does into the transition state (Al', R = tBu) leading to 

diastereoisomer IIA. 

Finally, it is interesting to note that steric strain in Bl' will increase 

not only as R is made bulkier, but also as M is made bulkier. When there are 

no polar groups (e.g., L = alkyl), this is not expected to lead to an increase 

in stereoselectivity, since the bulkier M, the more it is like L, and therefo- 

re the less difference there is between the transition states Al* and 32'. 

The situation is different, however, when L is an electronegative group (e.g., 

L = phenyl) because B2* is now destabilised by polar effects, and this ex- 

plains the puzzling fact that the hydride reduction of the ketones (I, L = Ph. 

S = H) becomes more stereoselective not only as R is made bulkier (see above), 

but also as M is made bulkier (with R = iPr, the IIA/IIB ratio increases from 

5 when M = Me (see Table) to 10 when M = iPr (16)]. 

To sum up, it seems that an interpretation of the steric course of these 

reactions based upon a preferred staggered conformation (Al*) for the transi- 

tion state is consistent with the available experiniental data. It has the 

added advantage that the same simple premises upon which it is based can also 

be used to interpret the steric course of the reactions of cyclohexanones 

with the same reagents (8). 
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